Тпи 4 3 параметры. Трансформаторы типа тпи


Блок питания содержит малое количество компонентов. В качестве импульсного трансформатора используется типовой понижающий трансформатор из компьютерного блока питания.
На входе стоит NTC термистор (Negative Temperature Coefficient) - полупроводниковый резистор с положительным температурным коэффициентом, который резко увеличивает свое сопротивление, когда превышена некоторая характеристическая температура TRef. Защищает силовые ключи в момент включения на время зарядки конденсаторов.
Диодный мост на входе для выпрямления сетевого напряжения на ток 10А.
Пара конденсаторов на входе берется из расчета 1 мкф на 1 Вт. В нашем случае конденсаторы "вытянут" нагрузку в 220Вт.
Драйвер IR2151 - для управления затворами полевых транзисторов, работающих под напряжением до 600В. Возможная замена на IR2152, IR2153. Если в названии есть индекс "D", например IR2153D, то диод FR107 в обвязке драйвера не нужен. Драйвер поочередно открывает затворы полевых транзисторов с частотой, задаваемой элементами на ножках Rt и Ct.
Полевые транзисторы используются предпочтительно фирмы IR (International Rectifier) . Выбирают на напряжение не менее 400В и с минимальным сопротивлением в открытом состоянии. Чем меньше сопротивление, тем меньше нагрев и выше КПД. Можно рекомендовать IRF740, IRF840 и пр. Внимание! Фланцы полевых транзисторов не закорачивать; при монтаже на радиатор использовать изоляционные прокладки и шайбы-втулки.
Трансформатор типовой понижающий из блока питания компьютера. Как правило, цоколевка соответствует приведенной на схеме. В этой схеме работают и самодельные трансформаторы, намотанные на ферритовых торах. Расчет самодельных трансформаторов ведется на частоту преобразования 100 кГц и половину выпрямленного напряжения (310/2 = 155В). Вторичные обмотки можно расчитать на другое напряжение.

Диоды на выходе с временем восстановления не более 100 нс. Этим требованиям отвечают диоды из семейства HER (High Efficiency Rectifier - высоко-эффективные выпрямительные). Не путать с диодами Шоттки.
Емкость на выходе - буферная емкость. Не следует злоупотреблять и устанавливать емкость более 10000 мкф.
Как и любое устройство, этот блок питания требует внимательной и аккуратной сборки, правильной установки полярных элементов и осторожности при работе с сетевым напряжением.
Правильно собранный блок питания не нуждается в настройке и налаживании. Не следует включать блок питания без нагрузки.

Вариант блока питания с выходным трансформатором на кольцевом сердечнике.

Решил собрать этот импульсный блока питания с выходным трансформатором на кольцевом сердечнике. Как оказалось частота преобразования при R2 10 кОм и C5 1000 пФ не 100 кГц а 70 кГц. Она определяется по формуле:

В качестве сердечника применил имеющийся в наличии, отечественный магнитопровод М2000НМ 45х28х12. Расчет производил с помощью программы ExcellentIT

Во время настройки включил вместо предохранителя лампу накаливания 60Вт, чтобы в случае ошибок в монтаже не «спалить» блок питания. Если в процессе настройки лампа горит, значит где-то замыкание, если мигает скорее всего неправильно рассчитан выходной трансформатор. Блок питания заработал сразу, расчеты оказались верными. Единственное что грелся гасящий резистор R1. Пришлось увеличить его мощность до 5 ВТ. Диоды также желательно поставить помощней с малым временем восстановления.

Шуруповерт, или аккумуляторная дрель очень удобный инструмент, но есть и существенный недостаток, - при активном использовании аккумулятор разряжается очень быстро, - за несколько десятков минут, а на зарядку требуются часы. Не спасает даже наличие запасного аккумулятора. Хорошим выходом из положения при проведении работ в помещении с рабочей электросетью 220V был бы внешний источник для питания шуруповерта от сети, который можно было бы использовать вместо аккумулятора. Но, к сожалению, промыш-ленно не выпускаются специализированные источники для питания шуруповертов от электросети (только зарядные устройства для аккумуляторов, которые невозможно использовать как сетевой источник из-за недостаточного выходного тока, а только как зарядное устройство).

В литературе и интернете встречаются предложения в качестве источника питания для шуруповерта с номинальным напряжением 13V использовать автомобильные зарядные устройства на основе силового трансформатора, а также блоки питания от персональных компьютеров и для галогенных осветительных ламп. Все это возможно неплохие варианты, но не претендуя на оригинальность, я предлагаю сделать специальный блок питания самостоятельно. Тем более, на основе приводимой мною схемы можно сделать и блок питания другого назначения.

И так, схема источника показана на рисунке в тексте статьи.

Это классический обратноходовый AC-DC преобразователь на основе ШИМ генератора UC3842.

Напряжение от сети поступает на мост на диодах VD1-VD4. На конденсаторе С1 выделяется постоянное напряжение около 300V. Этим напряжением питается импульсный генератор с трансформатором Т1 на выходе. Первоначально запускающее напряжение поступает на вывод питания 7 ИМС А1 через резистор R1. Включается генератор импульсов микросхемы и выдает импульсы на выводе 6. Они подаются на затвор мощного полевого транзистора VT1 в стоковой цепи которого включена первичная обмотка импульсного трансформатора Т1. Начинается работа трансформатора и появляются на вторичных обмотках вторичные напряжения. Напряжение с обмотки 7-11 выпрямляется диодом VD6 и используется
для питания микросхемы А1, которая перейдя на режим постоянной генерации начинает потреблять ток, который не способен поддерживать пусковой источник питания на резисторе R1. Поэтому при неисправности диода VD6 источник пульсирует, - через R1 конденсатор С4 заряжается до напряжения, необходимого для запуска генератора микросхемы, а когда генератор запускается повышенный ток С4 разряжает, и генерация прекращается. Затем процесс повторяется. При исправности VD6 схема сразу после запуска переходит на питание от обмотки 11 -7 трансформатора Т1.

Вторичное напряжение 14V (на холостом ходу 15V, под полной нагрузкой 11V) берется с обмотки 14-18. Выпрямляется диодом VD7 и сглаживается конденсатором С7.
В отличие от типовой схемы здесь не используется схема защиты выходного ключевого транзистора VT1 от повышенного тока сток-исток. А вход защиты -вывод 3 микросхемы просто соединен с общим минусом питания. Причина данного решения в отсутствии у автора в наличии необходимого низкоомного резистора (все-таки приходится делать из того что есть в наличии). Так что транзистор здесь не защищен от перегрузки по току, что конечно не очень хорошо. Впрочем, схема уже долго работает и без данной защиты. Однако, при желании можно легко сделать защиту, следуя типовой схеме включения ИМС UC3842.

Детали. Импульсный трансформатор Т1 -готовый ТПИ-8-1 от модуля питания МП-403 цветного отечественного телевизора типа 3-УСЦТ или 4-УСЦТ. Эти телевизоры сейчас частенько идут на разборку либо вообще выбрасываются. Да и трансформаторы ТПИ-8-1 в продаже присутствуют. На схеме номера выводов обмоток трансформатора показаны соответственно маркировке на нем и на принципиальной схеме модуля питания МП-403.

У трансформатора ТПИ-8-1 есть и другие вторичные обмотки, так что можно получить еще 14V используя обмотку 16-20 (либо 28V включив последовательно 16-20 и 14-18), 18V с обмотки 12-8, 29V с обмотки 12-10 и 125V с обмотки 12-6. Таким образом можно получить источник питания для питания какого-либо электронного устройства, например УНЧ с предварительным каскадом.

Впрочем этим дело и ограничивается, потому что перематывать трансформатор ТПИ-8-1, - довольно неблагодарная работа. Его сердечник плотно склеен и при попытке его разделить ломается совсем не там, где ожидаешь. Так что вообще любое напряжение от этого блока получить не выйдет, разве что с помощью вторичного понижающего стабилизатора.

Транзистор IRF840 можно заменить на IRFBC40 (что в принципе тоже самое), либо на BUZ90, КП707В2.

Диод КД202 можно заменить любым более современным выпрямительным диодом на прямой ток не ниже 10А.

В качестве радиатора для транзистора VT1 можно использовать имеющийся на плате модуля МП-403 радиатор ключевого транзистора, немного переделав его.

Описана принципиальная схема самодельного импульсного блока питания с выходным напряжением +14В и током, достаточным для питания шуруповерта.

Шуруповерт, или аккумуляторная дрель очень удобный инструмент,но есть и существенный недостаток, при активном использовании аккумулятор разряжается очень быстро, - за несколько десятков минут, а на зарядку требуются часы.

Не спасает даже наличие запасного аккумулятора. Хорошим выходом из положения при проведении работ в помещении с рабочей электросетью 220V был бы внешний источник для питания шуруповерта от сети, который можно было бы использовать вместо аккумулятора.

Но, к сожалению, промышленно не выпускаются специализированные источники для питания шуруповертов от электросети (только зарядные устройства для аккумуляторов, которые невозможно использовать как сетевой источник из-за недостаточного выходного тока, а только как зарядное устройство).

В литературе и интернете встречаются предложения в качестве источника питания для шуруповерта с номинальным напряжением 13V использовать автомобильные зарядные устройства на основе силового трансформатора, а также блоки питания от персональных компьютеров и для галогенных осветительных ламп.

Все это возможно неплохие варианты, но не претендуя на оригинальность, я предлагаю сделать специальный блок питания самостоятельно. Тем более, на основе приводимой мною схемы можно сделать и блок питания другого назначения.

Принципиальная схема

Схема частично заимствована из Л.1, вернее, сама идея, сделать нестабилизированный импульсный источник питания по схеме блокинг-генератора на основе трансформатора блока питания телевизора.

Рис. 1. Схема простого импульсного источника питания для шуруповерта, выполнена на транзисторе КТ872.

Напряжение от сети поступает на мост на диодах VD1-VD4. На конденсаторе С1 выделяется постоянное напряжение около 300V. Этим напряжением питается импульсный генератор на транзисторе VТ1 с трансформатором Т1 на выходе.

Схема на VТ1 - типичный блокинг-генератор. В коллекторной цепи транзистора включена первичная обмотка трансформатора Т1 (1-19). На неё поступает напряжение 300V с выхода выпрямителя на диодах VD1-VD4.

Для запуска блокинг-генератора и обеспечения его стабильной работы на базу транзистора VТ1 поступает напряжение смещения от цепи R1-R2-R3-VD6. Положительная обратная связь, необходимая для работы блокинг-генератора обеспечивается одной из вторичных катушек импульсного трансформатора Т1 (7-11).

Переменное напряжение с неё через конденсатор С4 поступает в базовую цепь транзистора. Диоды VD6 и VD9 служат для формирования импульсов на базе транзистора.

Диод VD5 совместно с цепью C3-R6 ограничивает выбросы положительного напряжения на коллекторе транзистора величиной напряжения питания. Диод VD8 совместно с цепью R5-R4-C2 ограничивает выбросы отрицательного напряжения на коллекторе транзистора VT1. Вторичное напряжение 14V (на холостом ходу 15V, под полной нагрузкой 11V) берется с обмотки 14-18.

Выпрямляется диодом VD7 и сглаживается конденсатором С5. Режим работы выставляется подстроечным резистором R3. Его регулировкой можно не только достигнуть уверенной работы блока питания, но в некоторых пределах отрегулировать выходное напряжение.

Детали и конструкция

Транзистор VT1 должен быть установлен на радиатор. Можно использовать радиатор от блока питания МП-403 или любой другой аналогичный.

Импульсный трансформатор Т1 - готовый ТПИ-8-1 от модуля питания МП-403 цветного отечественного телевизора типа 3-УСЦТ или 4-УСЦТ. Эти телевизоры некоторое время назад шли на разборку либо вообще выбрасывались. Да и трансформаторы ТПИ-8-1 в продаже присутствуют.

На схеме номера выводов обмоток трансформатора показаны соответственно маркировке на нем и на принципиальной схеме модуля питания МП-403.

У трансформатора ТПИ-8-1 есть и другие вторичные обмотки, так что можно получить еще 14V используя обмотку 16-20 (либо 28V включив последовательно 16-20 и 14-18), 18V с обмотки 12-8, 29V с обмотки 12-10 и 125V с обмотки 12-6.

Таким образом, можно получить источник питания для питания какого-либо электронного устройства, например УНЧ с предварительным каскадом.

На втором рисунке показано как можно сделать выпрямители на вторичных обмотках трансформатора ТПИ-8-1. Эти обмотки можно использовать для отдельных выпрямителей либо включать их последовательно для получения большего напряжения. Кроме того, в некоторых пределах можно регулировать вторичные напряжения, изменяя число витков первичной обмотки 1-19 используя для этого её отводы.

Рис. 2. Схема выпрямителей на вторичных обмотках трансформатора ТПИ-8-1.

Впрочем, этим дело и ограничивается, потому что перематывать трансформатор ТПИ-8-1, - довольно неблагодарная работа. Его сердечник плотно склеен, и при попытке его разделить ломается совсем не там, где ожидаешь.

Так что вообще любое напряжение от этого блока получить не выйдет, разве что с помощью вторичного понижающего стабилизатора.

Диод КД202 можно заменить любым более современным выпрямительным диодом на прямой ток не ниже 10А. В качестве радиатора для транзистора VT1 можно использовать имеющийся на плате модуля МП-403 радиатор ключевого транзистора, немного переделав его.

Щеглов В. Н. РК-02-18.

Литература:

1. Компаненко Л. - Простой импульсный преобразователь напряжения для БП телевизора. Р-2008-03.

Внесу-ка и я свой (частично правда позаимствованный у более крутого спеца в этом деле, думаю он не обидится) пятак в эту копилку.
До того как разбирать не вредно измерить индуктивность добротность обмоток, а еще лучше снять эти данные с живого образца, чтобы было с чем сравнить после ремонта.
По расклейке - фен помогает не всегда в случае больших сердечников. Я пользовался для расклейки сначала маленькой лабораторной плиткой, потом плоским ТЭНом от
электрочайника (там даже термовыключатель на 150 градусов стоит, но можно для перестраховки через ЛАТР включать и температуру подбирать). Ставил обязательно плотно прижимая свободной частью феррита (если стороной склейки то предварительно сошлифовав наплыв клея) к холодной поверхности нагревателя и уже потом включал.
При разборке главное терпение - потянул посильнее и вот те проблема лишняя.
По сердечникам - с разборкой и обратной сборкой проблем почти не было кроме GRUNDIGов и PANASONICов. В хрюнделях (залитые компаундом ТПИ в старых ТВ) основные проблемы как раз и связяны с сердечниками точнее с их расстрескиванием. Поставить туда другой подходящий по размерам сердечник не удается из-за того что рабочая частота этих ТПИ в 3-5 раз выше и низкочастотные сердечники не живут в них. Спасает в этом случае применение сердечников от больших FBТ. Для полноценного воссоздания требуется живой образец от такого-же изделия для сравнения характеристик. (ежели очень припрет восстановить - найдется)
(Вопросов о себестоимости и целесообразности данных работ просьба не задавать, но факт остается фактом - работают такие гибриды.)
С некоторыми Панасами хитрость заключается в очень маленьких зазорах и вот тут и помогает предварительный замер индуктивности.
Склеивать суперклеем не советую т к имел несколько повторов из-за растрескивания клеевого шва. Замесить каплю эпоксидки конечно суетно но надежнее, и после склейки хорошо сжать стык (например подав на обмотку постоянное напряжение - сама стянет да еще и слегка подогреет).
Про кастрюлю с кипятком - подтверждаю для случая с FBT (нужно было выдрать сердечники из 30 дохлых флаев) работает отлично, глумимться таким образом над ТПИ, которые предстояло перематывать не стал.
На данный момент все что перематывалось (мной, и в особо тяжелых случаях упомянутым спецом Н.Новопашиным) работает. Были даже успешные результаты по перемотке строчных трансформаторов (с внешним умножителем) от достаточно древних промышленных мониторов, но там секрет успеха в вакуумной пропитке обмоток (кстати Николай пропитывает практически все перемотанные трансы кроме откровенного ширпотреба) и на коленке это к сожалению не лечится.
Упомянутым Rematikом прибором проверяли недавно ВВ транс подсветки от приборной панели Мерседеса - показал все ОК на заведомо пробитом трансе, правда и DIEMENовский прибор тоже на нем обманул - пробивался транс только на довольно большом напряжении что собс-но и позволило его промерить на низком.

[ 27 ]

В однотактных схемах без фиксации произведения вольт-секунда для сердечников с (Bs - Br), равным 0,2 Тл, и с учетом переходных процессов установившееся значение ДВ ограничивается на уровне только 0,1 Тл Потери в магнитопроводе на частоте 50 кГц будут незначительными вследствие небольшого размаха колебаний магнитной индукции. В схемах с фиксированным значением произведения вольт-секунда величина ДВ может принимать значения до 0,2 Тл, что дает возможность значительно сократить габаритные размеры импульсного трансформатора

В питаемых током схемах источников питания (повышающие преобразователи и управляемые током понижающие стабилизаторы на связанных катушках индуктивности), значение ДВ определяется произведением вольт-секунда на вторичной обмотке при фиксированном выходном напряжении. Так как произведение вольт-секунда на выходе не зависит от изменений входного напряжения, то питаемые током схемы могут работать со значением ДВ, близким к теоретическому максимуму (если не учитывать потери в сердечнике), без необходимости ограничения величины произведения вольт-секунда.

На частотах выше 50 . 100 кГц значение АВ обычно ограничивается потерями в магнитопроводе.

Вторым шагом при проектировании мощных трансформаторов для импульсных источников питания необходимо произвести правильный выбор типа сердечника, который не будет насыщаться при заданном произведении вольт-секунда и обеспечит приемлемые потери в магнитопроводе и обмотках Для этого можно использовать итерационный процесс вычисления, однако приводимые ниже формулы (3 1) и (3 2) позволяют вычислить приближенное значение произведения площадей сердечника SoSc (произведение площади окна сердечника So и площади поперечного сечения магнитопровода Sc) Формула (3 1) применяется, когда значение ДВ ограничено насыщением, а формула (3.2) - когда значение ДВ ограничено потерями в магнитопроводе В сомнительных случаях вычисляются оба значения и используется наибольшее Из таблиц справочных данных для различных сердечников выбирается тот тип сердечника, у которого произведение So Sc превышает расчетную величину.

SoSc = (12,1-) [см],

-)-(Krf+KBTf)°.

Рвх = Рвых/ri = (выходная мощность/КПД);

К - коэффициент, учитывающий степень использования окна сердечника, площади первичной обмотки и конструктивный фактор (см. табл 3 1); fp - рабочая частота трансформатора

Таблица 3.1. Значения коэффициента К для трансформаторов типа ТПИ

Для большинства ферритов для сильных магнитных полей коэффициент гистерезиса равен Кг = 4 10, а коэффициент потерь на вихревые токи - Квт = 4 10 °.

В формулах (3.1) и (3.2) предполагается, что обмотки занимают 40% от площади окна сердечника, соотношение между площадями первичной и вторичной обмоток соответствует одинаковой плотности тока в обеих обмотках, равной 420 А/см, и что суммарные потери в магнитопроводе и обмотках приводят к перепаду температур в зоне нагрева на 30 °С при естественном охлаждении

В качестве третьего шага при проектировании мощных трансформаторов для импульсных источников питания необходимо произвести расчет обмоток импульсного трансформатора.

В табл. 3.2 приведены унифицированные трансформаторы электропитания типа ТПИ, используемые в телевизионных приемниках.

Таблица 3.2. Унифицированные трансформаторы питания типа ТПИ, используемые в телевизионных приемниках

Модель телевизора

Устройство электропитания

Типоразмер трансформатора

Тип конденсатора

К-50-35-160В-100 мкФ

МП-403, МП-403-1

К-50-35-350-100мкФ

МП-403-3, МП-403-4

К-50-35-250В-20 мкФ

К-50-35-160В-100 мкФ

К-50-35-250В-100мкФ

Таблица 3.3. Намоточные данные импульсных трансформаторов, применяемых в телевизорах

Обозначение трансформатора

Тип магнитопровода

Выводы обмоток

Тип намотки

Число витков

Марка и диаметр провода, мм

Намагничивающая

Стабилизации

То же, шаг 2,5 мм

Обратной связи

Рядовая в 2 слоя

Выходные с Увых, В:

5-8 8-9 9-4 6-7 2-1

Рядовая в 2 провода

0,6 0,2 0,2 0,2 0,2

Намагничивающая

Рядовая в 2 провода

Стабилизации

Выходные с Увых, В-

6-12 8-12 10-20 12-18

Обратной связи

ПЭВТЛ-2 0,45

Продолжение таблицы 3.3

Обозначение трансформатора

Тип магнитопровода

Наименование обмоток трансформатора

Выводы обмоток

Тип намотки

Число витков

Марка и диаметр провода, мм

Сопротивление постоянному току. Ом

Намагничивающая

в 2 провода

Стабилизации

Рядовая, шаг 2,5 мм

ПЭВТЛ-2 0,45

Выходные с Увых, В

6-12 8-12 10-20 12-18

Рядовая Рядовая в 2 провода Тоже

Обратной связи

ПЭВТЛ-2 0,45

Намагничивающая

Рядовая в 2 провода

Стабилизации

Рядовая, шаг 2,5 мм

Выходные с Увых, В

6-12 8-12 10-20 12-18

Рядовая Рядовая в 2 провода Тоже

Обратной связи

ПЭВТЛ-2 0,45

50 12 пластин

Первичная

Вторичная

Первичная

Вторичная

Чашка М2000 НМ-1

Первичная