Материнские платы для intel core i5 — Лучшие варианты для выбора. Теория и практика разгона процессоров Intel Skylake по шине BCLK Разгон тестовых образцов

В данном материале мы поэтапно рассмотрим методику увеличения производительности младшей 4-хъядерной модели LGA1151 – Corei5-6400.Разгон данного полупроводникового кристалла при помощи изменения множителя частоты центрального процессорного устройства будет невозможен. Однако существует альтернативный метод, который мы и изложим далее.

Corei5-6400: предыстория

Корпорация Intel до определенного момента предоставляла возможность увеличения тактовых частот своих полупроводниковых решений. Это позволяло добиваться существенного прироста быстродействия на практике. Последним поколением таких центральных процессоров стали решения, выполненные на базе LGA 1156. С выходом следующей платформы LGA 1155 можно было осуществлять увеличение тактовой частоты только путем изменения множителя частоты центрального процессора в моделях с индексом «К». Другие полупроводниковые кристаллы данного семейства попросту были лишены данной возможности. При их использовании можно было только на некоторых моделях системных плат увеличить на 2-3 МГц частоту шины и получить за счет этого незначительный прирост быстродействия. Такая ситуация сохранялась на протяжении трех следующих поколений процессоров. Только с выходом LGA1151 наметились определенные изменения в данном направлении. Архитектура центрального процессорного устройства была значительно переработана. В результате частота тактового генератора больше не оказывает напрямую влияние на такие компоненты персонального компьютера, как дискретная видеокарта и шина PCI-Express. В результате без изменения множителя центрального процессорного устройства можно изменить частоту тактового генератора и за счет этого увеличить производительность всей компьютерной системы в целом. Именно таким образом до настоящего времени и осуществляется разгон Corei5-6400.

Corei5-6400: характеристики чипа

Прежде всего, давайте попробуем разобраться с техническими спецификациями процессора Corei5-6400. В перечень параметров данного устройства входят:

— дата выпуска –3-ий квартал 2015 года;

— технологический процесс – 14 нм;

— количество программных потоков обработки данных и кода – 4;

— тактовые частоты – 2,7-3,3 ГГц;

— кэш 3-го уровня – 6 Мб;

— тепловой пакет – 65 Вт;

— интегрированный графический ускоритель -HDGraphics 530 с диапазоном рабочих частот 350-950 МГц;

— количество активных каналов оперативной памяти – 2;

— максимальный объем адресуемой оперативной памяти – 64 Гб;

— максимальная температура – 71 °С.

По обозначению данной модели центрального процессорного устройства можно увидеть, что в маркировке отсутствует индекс «К». Это значит, что разогнать процессор путем простого увеличения множителя, не получится. По этой причине остается только один способ решения данной задачи – это увеличение частоты тактового генератора. За счет этого может быть увеличено быстродействие Corei5-6400. В этом случае разгон действительно оправдан. У процессора изначально существенно занижены частоты. Их увеличение может привести к значительному приросту уровня производительности на фоне остальных моделей с более высокими частотами.

Corei5-6400: особенности разгона

Давайте отметим определенные недостатки, связанные с увеличением уровня быстродействия Corei5-6400. В отличие от случая, когда центральный процессор имеет индекс «К», при разгоне Corei5-6400 может возникнуть целый ряд проблем. К ним можно отнести следующие:

— материнская плата для разгона Corei5-6400должна быть прошита особой версией BIOS. Она формально была разработана производителем данного компьютерного компонента. Все возможные проблемы, которые могут возникнуть при этом, целиком и полностью ложатся на плечи владельца персонального компьютера. Производитель в этом случае не несет никакой ответственности. После разгона кристалла интегрированное графическое решение не может функционировать. В состав таких системных блоков в большинстве случаев входит дискретная видеокарта, и поэтому проблем не возникает. Если в процессе работы используется только встроенное решение, разгон не возможен.

— снижение уровня быстродействия выполнения инструкции AVX&AVX2. Данные инструкции, к счастью, не так часто встречаются в программном коде. Но кода это происходит, производительность вычислительной системы значительно снижается. Она будет даже ниже, чем в штатном режиме функционирования.

— после увеличения уровня быстродействия нет возможности контроля температуры кремниевого кристалла центрального процессорного устройства. Большинство датчиков искажают показания или отключаются. Единственный датчик, который продолжает работать в таком режиме – это термопреобразователь упаковки центрального процессора. В такой ситуации этого будет вполне достаточно. Для разгона нужно отключить технологию Turbo Boost и все энергосберегающие режимы. В режиме увеличения быстродействия их активация может привести к потере стабильности в работе персонального компьютера.

По существу в ранее приведенном списке нет никаких значительных проблем, и большинство оверлокеров не обращает на них внимания.

Corei5-6400: конфигурация системы

Теперь поговорим немного об основных требованиях комплектации персонального компьютера для осуществления разгона. Для этого должна быть особая версия BIOS для материнской платы с опцией разгона. Также необходимо иметь в наличии блок питания с мощностью 700 Вт и более, модули оперативной памяти с частотой работы 3200 МГц, продвинутую систему охлаждения для системного блока и центрального процессорного устройства.

Corei5-6400: подготовка к разгону

Разогнать процессор Corei5-6400 на материнской плате с обычным BIOS не получится. Здесь по умолчанию нет опции, которая позволила бы изменять частоту тактового генератора. Чтобы она появилась, нужно найти специальную прошивку и скачать ее. Найти такую прошивку можно на специальных тематических ресурсах в интернете. Затем необходимо установить ее в базовую систему ввода/вывода, а затем перезагрузить персональный компьютер и проверить наличие данной опции. Только после этого можно предпринять попытку разгона персонального компьютера.

Corei5-6400: методика увеличения производительности

Теперь поговорим непосредственно об алгоритме разгона Corei5-6400. Разгон данного кремниевого решения осуществляется следующим образом. Прежде всего, необходимо скачать специальную прошивку для BIOS, в которой присутствует возможность изменения частоты тактового генератора. Подобные прошивки можно найти на большинстве оверлокерских форумов. После этого устанавливаем ее на свою материнскую плату. Теперь перезагружаем систему и заходим в BIOS. Здесь необходимо отключить опцию Turboboost и все технологии, которые связаны с энергоэффективностью. Также нужно отключить интегрированное графическое решение. Теперь необходимо сохранить выполненные изменения и перезапустить персональный компьютер. Проверьте стабильность работы системного блока при помощи утилиты AIDA 64. Заново выполняем перезагрузку компьютера и заходим в режим BIOS. Здесь необходимо по минимуму снизить частоту работы оперативной памяти, повысить значение частоты тактового генератора с минимальным шагом. Сохраняем данные параметры и перезапускаем системный блок. После этого заново тестируем стабильность работы персонального компьютера при помощи указанного ранее программного обеспечения. Продолжаем выполнять последних два этапа до тех пор, пока система не начнет функционировать стабильно. Если простого повышения частоты для стабильной работы окажется недостаточно, необходимо использовать напряжение на центральном процессорном устройстве. Частота на практике можно достигать 4,5-4,8 ГГц. Напряжение на практике может составлять 1,4-1,425 В. В данном случае все будет зависеть от качества полупроводникового кристалла ЦПУ, лежащего в основе персонального компьютера. Дальнейший разгон при достижении таких значений становится нецелесообразным. Вычислительная система после этого начинает работать нестабильно.

Как проверить работоспособность после увеличения быстродействия?

После увеличения производительности процессора Corei5-6400, необходимо проверить стабильность функционирования вычислительной системы, работающей на основе Corei5-6400. Как было отмечено ранее, разгон может оказать негативное влияние на исполнение инструкций AVX&AVX2 . По этой причине в состав тестового программного обеспечения не должны входить программы на основе таких инструкций. Для проверки стабильности работы вычислительной системы оптимальным выбором является AIDA 64. Данная утилита практически не использует проблемный программный код. Конечно, существуют версии утилиты, в которых не используются такие инструкции.

Увеличение производительности Corei5-6400: результаты

Увеличение производительности может помощь добиться от Corei5-6400 феноменальных результатов. Разгон данного чипа позволяет получить уровень быстродействия, который вполне сопоставим с флагманскими продуктами данного производителя. Разница в цене при этом действительно получается довольно внушительная. В этом плане единственным исключением является программное обеспечение с инструкциями AVX&AVX2. Однако оно встречается не столь часто. Для большинства компьютерных энтузиастов это вряд ли станет сдерживающим фактором. Стоит отметить, что для данного процессорного решения разгон вполне оправдан. Однако важно осознавать, что делается все на свой страх и риск.

Те пользователи, знакомство которых с миром персональных компьютеров началось ещё в прошлом веке, наверняка помнят легендарные процессоры Celeron 300A. Ведь оверклокинг как массовое явление начинался именно с них. И тому были веские причины: они без особого труда разгонялись по частоте как минимум в полтора раза, и в результате такой процессор со стоимостью около $150 достигал по производительности уровня старшего 700-долларового Pentium II 450. Именно это и заложило идеологическую базу оверклокинга: «Плати меньше - получай больше».

Однако золотые дни разгона процессоров, подпитываемого желанием сэкономить, остались далеко в прошлом. Теперь разгон стал хобби для богатых, и те пользователи, которые хотят приобщиться к армии оверклокеров, вынуждены, наоборот, платить больше: на все оверклокерские процессоры накладывается дополнительная наценка. Последним же относительно недорогим процессором, который можно было разгонять до уровня старших представителей в линейке, стал выпущенный в 2009 году Core i5-750 поколения Lynnfield. Его при определённом везении вполне можно было раскочегарить до производительности, выдаваемой процессорами класса Core i7. И кстати, выпускаемые в то же время процессоры Core i3 поколения Clarkdale тоже вполне допускали разгон.

Но в 2011 году выход платформы LGA1155 и очередного поколения процессоров Core положил конец всему этому богатству возможностей, доступному даже в бюджетных платформах. Обычные процессоры поколения Sandy Bridge разгоняться перестали совсем, а оверклокерам на выбор были предложены лишь две модели: Core i5-2500K и Core i7-2600K, которые Intel решила продавать несколько дороже обычных и аналогичных по характеристикам собратьев. В результате входной билет в оверклокерский клуб стал стоить $216 - именно в такую сумму был оценён разгоняемый Core i5. Впрочем, энтузиастов это не сломило, и продажи таких дорогих процессоров оказались весьма приличными. Ведь заплатить явно было за что. Рабочую частоту Core i5-2500K и Core i7-2600K можно было поднять до уровня в 4,8-5,0 ГГц, при том что их номинальные частоты составляли 3,3-3,4 ГГц. Поэтому, немного повозмущавшись для приличия, пользователи всё же приняли новую оверклокерскую парадигму, даже несмотря на то, что ни одна из моделей CPU дешевле $200 больше не могла быть разогнана.

Однако в последнее время отношение Intel к разгону стало снова меняться. На волне падения интереса к традиционным ПК именно энтузиасты оказались наиболее преданными покупателями продукции микропроцессорного гиганта. Видимо, это растопило лёд в сердце Intel, и оверклокерам стали оказывать разнообразные знаки внимания. Одним из самых явных таких знаков стало появление Pentium G3258 Anniversary Edition - бюджетного 72-долларового процессора, предназначенного именно для разгона. Но хотя этот процессор стал весьма популярной игрушкой в руках экономных оверклокеров, полноценным оверклокерским предложением его назвать тяжело. Предложения серии Pentium имеют всего два ядра и не поддерживают технологию Hyper-Threading, что нельзя компенсировать никаким увеличением тактовой частоты. Поэтому для серьёзных систем Pentium G3258 попросту не годится.

С выходом новейших процессоров Skylake многие энтузиасты связывали надежды на ещё большие послабления в части ограничения разгонных возможностей процессоров Intel. Дело в том, что в числе свойств новой платформы LGA1151 значилась возможность беспрепятственного изменения частоты базового тактового генератора. И это обещало возвращение разгона любых процессоров - начиная с самых младших Pentium, и заканчивая процессорами Core i5 и i7 без литеры K в названии. Однако поначалу реальность оказалась несколько иной: в неоверклокерских процессорах Intel реализовала блокировку смены тактовой частоты - эта функция получила собственное название BCLK Governor.

Но по прошествии нескольких месяцев после анонса Skylake стало понятно, что работает такая блокировка исключительно на программном уровне и её, соответственно, не сложно обойти. В течение последних недель производители материнских плат смогли детально разобраться с функционированием защиты, и сегодня со всей определённостью можно сказать о том, что разгон моделей Skylake, не относящихся к числу оверклокерских, - это реальность. И кстати, судя по отсутствию какого-либо противодействия со стороны Intel, такая победа над BCLK Governor на самом деле не расстраивает производителя процессоров и происходит с его молчаливого согласия (а может быть, даже и с некоторым содействием).

Впрочем, не будем углубляться в конспирологию, у этого материала совсем иная цель. Открывшиеся возможности по разгону любых Skylake непременно должны быть проверены. Поэтому мы решили протестировать, как протекает и каких результатов позволяет достичь разгон наиболее интересных и правильных с точки зрения изначальной оверклокерской парадигмы объектов - младшего четырёхъядерника серии Core i5 и младшего двухъядерного процессора серии Core i3.

Разгон заблокированных Skylake: как это работает

Итак, с точки зрения разгона модельный ряд процессоров Skylake совершенно не отличается по своей структуре от предыдущих поколений. Intel представила множество двухъядерных и четырёхъядерных процессоров Core i3, i5 и i7 шестого поколения, но разгонять разрешено лишь две специальные модели - Core i5-6600K и Core i7-6700K . Эти процессоры стоят чуть дороже аналогичных моделей без буквы K в названии, но зато имеют разблокированные множители, и на платах с набором микросхем Intel Z170 их результирующая частота легко меняется в настройках UEFI BIOS. Остальным же представителям семейства Skylake такая возможность недоступна, и это ограничение — аппаратное.

Однако тактовая частота, на которой работает процессор, на самом деле является произведением двух параметров - множителя и базовой частоты. И в то время как в обычных, не предназначенных для разгона процессорах множитель жёстко блокируется, для разгона всё равно остаётся альтернативный путь - через увеличение базовой частоты (BCLK) выше стандартного значения 100 МГц. Проблема лишь в том, что в последних интеловских платформах для Sandy Bridge, Ivy Bridge и Haswell частота BCLK была жёстко связана не только с частотой процессора, но и с другими частотами в системе, например с частотой работы шин DMI и PCI Express. А эти шины, к сожалению, очень капризны и работают на повышенной частоте крайне неохотно. Увеличение их частоты более чем на 3-5 процентов неминуемо приводит к искажению передаваемых данных. Поэтому на платах под процессоры в LGA1150- и LGA1155-исполнении изменять BCLK совершенно бесполезно - рост базовой частоты выше номинального значения вызывает нестабильность или полную неработоспособность системы в целом.

Но с выходом процессоров Skylake компания Intel решила внести некоторые изменения в привычную схему формирования частот. В новой платформе шина PCI Express и набор системной логики выделены в отдельный домен, частота которого остаётся фиксированной вне зависимости от того, как изменяется BCLK.

На базовую частоту BCLK остались жёстко завязаны лишь внутрипроцессорные компоненты: вычислительные ядра, кеш, интегрированное графическое ядро, контроллер памяти и прочие Uncore-блоки, которые синхронизируются исключительно между собой, а потому относятся к разгону снисходительно. Таким образом, в теории всё выглядит так, как будто к разгону через изменение базовой частоты пригодны абсолютно любые процессоры Skylake.

И оверклокерские Skylake, действительно, превосходно разгоняются не только через повышение множителя, но и путём увеличения частоты BCLK. Но несмотря на это, первые попытки по изменению частоты Skylake, не относящихся к K-серии, никаких плодов не приносили. Дело в том, что в таких процессорах Intel встроила защиту от увеличения базовой частоты - упомянутый нами выше механизм BCLK Governor, который не давал поднимать BCLK свыше 103-104 МГц. К счастью, как мы уже сказали ранее, защита эта имеет не аппаратный характер и может быть обойдена на программном уровне. Для того чтобы научиться преодолевать её, производителям материнских плат пришлось потратить несколько месяцев. Но результат достигнут - на сегодня алгоритм отключения BCLK Governor средствами BIOS материнской платы найден.

Прорыв на данном направлении совершила Supermicro - именно на её плате C7H170-M была продемонстрирована принципиальная возможность работы неоверклокерских процессоров Skylake с сильно повышенной частотой BCLK. А вслед за Supermicro быстро реализовали подобную функциональность и другие фирмы. На сегодняшний день практически все флагманские материнки ASUS, ASRock, Biostar, Gigabyte, EVGA и MSI на базе набора логики Intel Z170 получили специальные версии BIOS, в которых добавлена возможность полноценного управления частотой BCLK для всего модельного ряда Skylake-процессоров. И более того, как утверждают инженеры, подобная же функциональность с некоторыми ограничениями может быть перенесена и на платы с более простыми наборами логики, так что, вполне вероятно, разгон через увеличение базовой частоты в скором времени станет доступен и в совсем недорогих платформах.

Впрочем, не всё так просто. Реализация обхода интеловской защиты требует некоторых ухищрений, в результате которых разогнанные через увеличение BCLK неоверклокерские процессоры приобретают некоторые изъяны:

  • Разогнанный процессор полностью теряет контроль над коэффициентом умножения. Это значит, что при разгоне «по шине» придётся забыть о технологиях Turbo Boost, Intel Enhanced SpeedStep и об энергосберегающих состояниях C-states. CPU всегда будет работать на предельной частоте и при постоянном напряжении питания.
  • Пропадает возможность снятия показаний температур со встроенных в вычислительные ядра термодатчиков. Большинство средств мониторинга попросту не может отображать температуру процессорных ядер.
  • Неработоспособным оказывается встроенное графическое ядро. Выражается это в том, что драйвер Intel HD Graphics при попытке запуска на разогнанном процессоре тут же завершает свою работу с ошибкой.
  • Существенно снижается скорость выполнения AVX/AVX2-инструкций.

В принципе, приведённый список выглядит не слишком устрашающим. Энергосберегающие режимы оверклокеров интересуют слабо, тем более что в простое процессор потребляет не слишком много и без какого-либо снижения частоты и напряжения питания. Контроль за тепловым режимом CPU проводить с помощью датчиков температуры ядер совсем необязательно: например, встроенный датчик температуры упаковки процессора (CPU Package) продолжает исправно возвращать корректные показания и при разгоне через увеличение частоты BCLK. Ну а встроенная графика вообще многими считается в современных CPU не более чем балластом.

Опасение вызывает лишь замедление работы AVX/AVX2-инструкций. Производительность алгоритмов, активно использующих векторные инструкции, может падать многократно. Но на самом деле смириться можно и с этим: игровые приложения, скорость в которых интересует большинство оверклокеров в первую очередь, AVX-команды практически не задействует.

Поскольку оверклокингу через увеличение частоты BCLK теперь можно подвергать абсолютно любые процессоры поколения Skylake, наибольший практический интерес представляет разгон младших моделей в каждом семействе. Именно в этом случае принцип «плати меньше - получай больше» может дать максимальный эффект. Приняв во внимание тот модельный ряд Skylake, который представлен Intel к настоящему моменту, мы сформировали следующий перечень LGA1151-процессоров, наиболее подходящих для разгона:

Процессор Ядра/ потоки L3-кеш Штатный множитель Цена BCLK для 4,6-4,8 ГГц

Core i7-6700

Core i5-6400

Core i3-6300

Core i3-6100

Pentium G4400

Все процессоры из этого списка мы проверять не стали, а выбрали лишь пару самых-самых интересных: Core i5-6400 и Core i3-6100. Именно с ними и проводились все практические эксперименты.

Разгон BCLK: что на практике

В реальности работает всё очень просто. Единственное, что нужно для разгона неоверклокерского Skylake, - это правильная материнская плата, для которой существует адаптированная версия BIOS. На сегодня список подходящих плат уже очень велик, однако нужно иметь в виду, что далеко не все производители выкладывают версии BIOS с поддержкой разгона обычных Skylake-процессоров на свои сайты. Некоторые из них, побаиваясь карающей длани Intel, распространяют необходимые для разгона прошивки по-партизански - через независимые оверклокерские форумы. Поэтому перед тем, как перейти непосредственно к разгону, какое-то время придётся потратить на поиск нужной версии BIOS.

Например, та плата, что используется для тестов процессоров в нашей лаборатории, - ASUS Maximus VIII Ranger , получила уже даже две версии BIOS, подходящие для разгона Skylake с заблокированными множителями. Но искать их нужно не на сайте ASUS, а в специальной теме на оверклокерском портале HWBOT, хотя они и сделаны программистами компании, а не энтузиастами. Стоит отметить, что обе эти версии представляют собой ответвление от основной линии развития BIOS и предназначены исключительно для экспериментов по разгону не-K-процессоров. Более того, файл описания к этим специальным прошивкам содержит предупреждение о том, что для разгона Core i5-6600K или Core i7-6700K они не подходят и могут даже вызвать повреждение таких процессоров.

Интерфейс специальных прошивок совершенно не отличается от привычной среды UEFI BIOS: никаких дополнительных опций он не добавляет и лишь позволяет беспрепятственно менять частоту BCLK. Единственное отличие в процедуре разгона заключается в том, что для нормальной загрузки операционной системы в настройках UEFI BIOS в разделе Advanced\CPU Configuration потребуется установить опцию Boot Performance Mode в значение Turbo Performance , а также отключить CPU C- states и технологию Intel SpeedStep . В остальном же всё работает ровно так же, как и при разгоне разблокированных процессоров.

Правда, нужно сделать ещё одно важное предварительное замечание, касающееся проверки стабильности работы разогнанной системы. Дело в том, что общепринятые утилиты, которыми обычно проверяется стабильность, такие как OCCT, LinX или Prime95, активно используют ресурсоёмкие AVX/AVX2-инструкции, выполнение которых у разогнанных процессоров с заблокированным множителем сильно замедлено. Поэтому для неоверклокерских процессоров эти утилиты создать значительную нагрузку оказываются неспособны, и для проверки температурного режима и устойчивости работы в целом они уже не подходят. Вместо этого пользоваться лучше программами, которые могут «озадачить» ядра процессоров интенсивными целочисленными вычислениями, среди которых можно порекомендовать различные пакеты для финального рендеринга. Впрочем, даже такие программы греют Skylake не слишком сильно, поэтому в конечном итоге предельные температуры разогнанных не-К-процессоров оказываются заметно ниже, чем у их полноценных оверклокерских собратьев. Поэтому для неоверклокерских процессоров можно обойтись даже менее мощными системами охлаждения, чем принято использовать в платформах, где трудятся разогнанные Core i5-6600K или i7-6700K.

Теперь о полученных результатах. Мы не ставили своей целью достижение каких бы то ни было рекордов. Задача проведённого тестирования - выявить тот разгонный потенциал не-К-процессоров семейства Skylake, который можно раскрыть в массовых системах. Поэтому для отвода тепла от тестовых CPU мы пользовались обычным воздушным кулером башенного типа Noctua NH-U14S, а процессорное напряжение не повышали до потенциально опасных величин. Иными словами, такой разгон, о котором пойдёт речь далее, - это вполне приемлемые для постоянной эксплуатации режимы работы.

Первым мы попробовали разогнать четырёхъядерный Core i5-6400. Это - процессор с крайне низким штатным множителем 27x, поэтому при его разгоне частоту BCLK необходимо повышать довольно сильно. Однако никаких проблем с этим нет: при увеличении напряжения питания до 1,425 В и включении опции CPU Load-line Calibration наш экземпляр Core i5-6400 легко покорил отметку 4,7 ГГц.

Стабильность в таком состоянии была подтверждена полным прохождением всего набора тестовых приложений, температура же CPU под нагрузкой не выходила за 80-градусные пределы. Иными словами, разгон удался на славу: тактовая частота процессора была повышена на 75 процентов выше номинала, и по достигнутой частоте Core i5-6400 оказался совсем не хуже, чем чистокровный оверклокерский Core i5-6600K. То есть, на первый взгляд, Core i5-6400 позволяет сэкономить порядка $60 - именно такова разница в цене этих четырёхъядерников.

Но не стоит забывать и про подводные камни. Показания температурных датчиков у разогнанного Core i5-6400 оказались недоступны. Утилиты для мониторинга о температуре процессорных ядер действительно не отображают никаких корректных данных.

Как и было обещано, катастрофически упала и скорость работы алгоритмов, задействующих AVX/AVX2-инструкции. Для примера мы запустили три простых теста FPU из утилиты Aida64, и, как можно убедиться по приведённым снимкам экрана, производительность разогнанного Core i5-6400 оказалась в несколько раз хуже, чем должна была быть.

Чтобы лучше оценить масштаб бедствия, в следующей таблице мы приводим показатели этих бенчмарков для Core i5-6400 в номинальном режиме и при его разгоне до 4,7 ГГц.

Частота растёт, а производительность снижается в несколько раз. Такова расплата за разгон той модели процессора, которая изначально для разгона не предназначена. Остаётся лишь утешать себя тем, что программы, активно работающие с AVX/AVX2-инструкциями, среди привычных для большинства пользователей приложений встречаются не слишком часто.

Второй выбранный нами для тестов процессор, Core i3-6100, - это младший двухъядерник с технологией Hyper-Threading, изначально рассчитанный на работу при частоте 3,7 ГГц. Но с помощью увеличения частоты BCLK разогнать оказалось очень легко и его. Предельная частота, при которой наш экземпляр смог нормально работать, составила те же типичные для Skylake 4,7 ГГц. Функционирование в таком режиме потребовало установки частоты BCLK в 127 МГц, а стабильность была достигнута при увеличении напряжения питания CPU до 1,425 В.

Никаких проблем с устойчивой работой системы при таком разгоне не наблюдалось, процессор же разогревался не более чем до 75 градусов. Таким образом, частоту выбранного нами для тестов экземпляра Core i3-6100 удалось увеличить на 27 процентов. Это - заметно меньше того прироста, который удалось выжать из Core i5-6400, но всё равно неплохо. Тем более до сегодняшнего дня увидеть современный Core i3 в разгоне нам ещё не удавалось ни разу.

К сказанному остаётся добавить лишь две вещи. Во-первых, у не-К-процессоров частота работы Uncore-блоков жёстко связана с частотой вычислительных ядер. Изменение в настройках BIOS множителя, отвечающего за частоту Uncore, на неоверклокерские процессоры никак не влияет - это функция работает лишь для Core i5-6600K и Core i7-6700K. Поэтому при разгоне не-K процессоров через увеличение частоты BCLK одновременно с вычислительными ядрами разгоняется и L3-кеш. К счастью, в этом нет никакой проблемы. Как показали наши эксперименты с Core i5-6400 и i3-6100, Uncore-узлы Skylake вполне нормально функционируют на повышенных частотах вместе с вычислительными ядрами и не создают при разгоне до 4,7 ГГц никаких дополнительных препятствий.

Во-вторых, неприятных сюрпризов не следует ждать и со стороны контроллера памяти. Применяемые нами в тестовой системе модули Corsair Vengeance LPX CMK16GX4M2B3200C16R рассчитаны на режим DDR4-3200, и они смогли нормально работать в нём, в том числе и при увеличенной частоте BCLK, с обоими протестированными CPU. Естественно, рост частоты базового тактового генератора требует попутного увеличения делителей, формирующих частоту памяти, и про это не нужно забывать во время разгона. Но никаких проблем при работе со скоростной DDR4-памятью у разогнанных не-К-процессоров обнаружено не было.

В этом материале будет поэтапно приведена методика увеличения производительности младшей 4-хъядерной модели платформы LGA1151 - «Кор i5-6400». Разгонэтого полупроводникового кристалла с помощью изменения множителя частоты ЦПУ невозможен. Но есть альтернативный метод, который в дальнейшем и будет изложен.

Предыстория

До определенного момента корпорация «Интел» предоставляла возможность увеличивать тактовые частоты своих полупроводниковых решений компьютерным энтузиастам, и это позволяло добиваться на практике существенного прироста быстродействия. Последним таким поколением центральных процессоров стали решения на базе LGA1156. С выходом следующей платформы LGA1155 можно было увеличивать тактовую частоту лишь только изменением множителя частоты ЦПУ в моделях процессоров с индексом «К». Все остальные полупроводниковые кристаллы данного семейства были лишены такой возможности. В случае их использования можно было лишь на некоторых моделях системных плат увеличить частоту шины на 2-3 МГц и получить за счет этого незначительный прирост быстродействия. Аналогичная ситуация сохранялась на протяжении следующих трех поколений процессоров, и лишь только с выходом LGA1151 наметились в данном направлении определенные изменения. Архитектура ЦПУ была переработана, и после этого генератора напрямую не влияет на такие компоненты ПК, как и Как результат, не изменяя множитель ЦПУ, можно изменить частоту тактового генератора (то есть и за счет этого увеличить производительность компьютерной системы. Именно так и осуществляется разгон i5-6400 по шинена сегодняшний день.

Характеристики чипа

Для начала разберемся с техническими спецификациями Core i5-6400. В перечень его параметров входят следующие:

    Дата выпуска — 3-й квартал 2015 года.

    Техпроцесс — 14 нм.

    Количество ядер и программных потоков обработки кода и данных — 4.

    Диапазон тактовых частот — 2,7-3,3 ГГц.

    Кеш 3-го уровня — 6 Мб.

    Максимальное количество адресуемой ОЗУ — 64 Гб.

    Количество активных каналов ОЗУ — 2.

    Интегрированный графический ускоритель — HD Graphics модели 530 с диапазоном рабочих частот 350-950 МГц.

    Тепловой пакет - 65 Вт.

    Максимальная температура — 71 о С.

Как видно из обозначения данной модели ЦПУ, в ее маркировке отсутствует индекс «К». Соответственно, разогнать ее привычным увеличением множителя не получится. Поэтому остается один-единственный способ решения этой задачи — увеличение частоты и увеличение за счет этого быстродействия «Кор i5-6400». Разгон же в этом случае действительно оправдан: изначально у процессора существенно занижены частоты, и их увеличение приведет к большому приросту производительности на фоне остальных аналогичных моделей с более высокими частотами.

Особенности разгона

Теперь отметим определенные недостатки, которые связаны с увеличением уровня быстродействия процессорного решения Core i5-6400.В отличие от ситуации, когда просто увеличивается множитель у ЦПУ с индексом «К», в этом случае действительно возникает целый ряд возможных проблем. К ним можно отнести следующие:

    Материнская плата для разгона i5-6400 должна прошиться особой версией БИОСа. Формально она разработана производителем данного компьютерного компонента, но все возможные проблемы, которые после этого могут возникнуть, целиком и полностью ложатся на плечи владельца ПК, и производитель в этом случае не несет никакой ответственности.

    После разгона полупроводникового кристалла не может функционировать интегрированное графическое решение. В большинстве случаев в состав таких системных блоков входит дискретная видеокарта, и проблем не возникает. Если же в процессе работы используется лишь только встроенное решение, то разгон невозможен.

    Снижение быстродействия выполнения инструкции AVX & AVX2. К счастью, они не так уж часто встречаются в программном коде. Но когда это произойдет, производительность такой вычислительной системы сильно снизится (она будет ниже даже штатного режима функционирования).

    После такого увеличения быстродействия отсутствует возможность контролировать температуру кремниевого кристалла ЦПУ. Большинство датчиков отключаются или искажают показания. Единственный датчик, который продолжает в таком режиме функционировать — это термопреобразователь упаковки ЦПУ, и этого вполне достаточно в такой ситуации.

    Для разгона необходимо отключить все энергосберегающие режимы и технологию «Турбобуст». Их активация в режиме увеличения быстродействия приводит к нестабильной работе ПК.

    По существу в приведенном ранее списке нет каких-либо существенных проблем, и большинство оверлокеров их даже не замечают.

    Конфигурация системы

    Теперь о требованиях к комплектации ПК для осуществления такого разгона:

      Должна существовать особая версия БИОСа для материнской платы с опцией разгона.

      Улучшенный блок питания с мощностью 700 Вт и более.

      Модули ОЗУ с частотой работы 3200 МГц.

      Продвинутая система охлаждения для ЦПУ и системного блока.

    Подготовка оборудования

    Разгон процессора i5-6400 на материнской плате с обычным БИОСом невозможен. Опции, которая бы позволяла изменять частоту тактового генератора, по умолчанию нет. Для того чтобы она появилась, необходимо на тематических ресурсах в глобальной паутине найти специальную прошивку и скачать ее. Затем ее необходимо установить в базовую систему ввода/вывода. После этого перезагрузить ПК и проверить наличие такой опции. Лишь только после этого можно пытаться разогнать ПК.

    Методика увеличения производительности

    Теперь непосредственно об алгоритме разгона «Кор i5-6400». Разгонэтого кремниевого решения осуществляется следующим образом:

      Скачиваем специальную прошивку для БИОСа системной платы, в которой есть возможность изменения частоты тактового генератора. На большинстве оверлокерских форумов есть такая информация. Затем ее инсталлируем на свою материнскую плату.

      Перезагружаем вычислительную систему и заходим в БИОС. Здесь отключаем опцию «Турбобуст», все технологии, связанные с энергоэффективностью, и интегрированное графическое решение. Сохраняем изменения и перезапускаем ПК.

      Проверяем стабильность работы системного блока с помощью утилиты AIDA 64.

      Заново перезагружаем компьютер и заходим в БИОС. Здесь снижаем частоту работы оперативной памяти по минимуму (сколько позволяют параметры БИОСа системной платы), повышаем значение частоты тактового генератора с минимально возможным шагом. Сохраняем эти параметры. Перезапускаем системный блок.

      Заново тестируем стабильность работы ПК с помощью ранее указанного программного обеспечения. Продолжаем выполнять два последних этапа до тех пор, пока система функционирует стабильно. Когда простого повышения частоты недостаточно для стабильной работы, используем напряжение на ЦПУ. На практике частота может достигать 4,5-4,8ГГц, а напряжение - 1,4-1,425В в зависимости от качества полупроводникового кристалла центрального процессора, который лежит в основе ПК. При достижении таких значений дальнейший разгон становится нецелесообразным: вычислительная система после этого перестает работать стабильно.

    Проверка работоспособности после увеличения быстродействия

    После увеличения производительности необходимо проверить стабильность функционирования вычислительной системы на базе Intel Core I5-6400. Разгон, как было отмечено ранее, негативно влияет на исполнение инструкций AVX & AVX2. Поэтому в состав тестового программного обеспечения не должны входить программы на основе именно таких инструкций. Наиболее оптимальным выбором для проверки стабильности работы вычислительной системы является в этом случае AIDA 64. Эта утилита практически не использует проблемный программный код. Да и есть ее версии, в которых такие инструкции не используются.

    Результаты

    Увеличение производительности позволяет добиться феноменальных результатов от «Кор i5-6400». Разгонэтого чипа позволяет получить уровень быстродействия, сопоставимый с флагманскими продуктами этого производителя. При этом разница в цене действительно внушительная. Единственным исключением в этом плане является софт с инструкциями AVX & AVX2. Но они не настолько уж и часто встречаются, и это для большинства компьютерных энтузиастов вряд ли станет сдерживающим фактором. Разгон такого решения действительно оправдан. Но важно понимать: все это делается на собственный страх и риск.

18.10.2015 20:39

Наконец-то на российском рынке начали появляться бюджетные решения на базе архитектуры Intel Skylake. В продажу уже поступили Intel Core i5 и Intel Core i3 шестого поколения на основе 14 нм.

Это четырехъядерный 14 нм процессор на базе архитектуры Skylake, способный работать в “сокетном гнезде” LGA 1151 в связке с двухканальной оперативной памятью DDR4 и DDR3L.

С одним из топовых решений с разблокированным множителем мы познакомились в материале про (там же поговорили о ключевых нововведениях и функционале чипсета ), пришел черед заблокированных ЦП, тем более, что мы были удивлены внезапно предложенной Intel возможности отказа от привязки частоты BCLK к тактовой частоте ядра, что позволило беспрепятственно разгонять до значительных показателей процессоры с заблокированным множителем, но обо всем по порядку.

К моменту написания этого материала в сети появился второй даташит или же техническая документация с подробной информацией о шестом поколении процессоров Intel и чипсете Intel Z170 (на английском языке), предлагаем ссылку и на первую часть .

На сотнях листов pdf формата в мельчайших деталях описаны схемы взаимодействия новых процессоров с комплектующими, аппаратными развязками, соединениями; здесь же отражены и многие скоростные характеристики.

Информации очень много, львиная доля текста многими проигнорируется, большой объем цифр вряд ли пригодится рядовому пользователю. Но, не смотря на это, в наших статьях мы считаем обязательным рассказать хотя бы о ключевых особенностей выходящих новинок.

В нагрузке Intel Core i5-6400 редко нагревается выше 45 Градусов, а для отвода тепла хватает BOX кулера или алюминиевой вертушки

Важно помнить, что Intel Z170, а вместе с ним и шестое поколение процессоров Skylake-S, – это эволюционное продолжение Intel Z97 и архитектуры Haswell. В общем-то мы уже убедились, что кардинальных изменений в производительности решений 2015 и 2014 года нет, даже не смотря на поддержку памяти DDR4 в ЦП на основе 14 нм.

Еще одним ярким подтверждением вышеописанным фактам является в общем-то схожий форм-фактор самих камней , возможность работы только с одним PCI-E x16 портом на соответствующей скорости (то есть с 16 линиями), а также в целом равные аппаратные характеристики сопоставимых процессоров разных поколений.

Но пора более подробно поговорить о виновнике торжества, а именно о ЦП Intel Core i5-6400. Это четырехъядерный 14 нм процессор на базе архитектуры Skylake, способный работать в сокетном гнезде LGA 1151 в связке с двухканальной оперативной памятью DDR4 и DDR3L (лучше не акцентировать внимания на последнем стандарте, потому как толковых материнских плат с DDR3L для Skylake еще нет, а Intel регулярно о многочисленных ограничениях подобного формата).

Hyper-Threading в Intel Core i5-6400 нет, как в общем-то и во всей линейке кор ай пять , но физических ядер в количестве четырех штук этому камню более чем достаточно. Количество кэш-памяти - 6 Мбайт. Тактовая частота - 2700 МГц, в режиме буста – 3300 МГц.

Мощность физических ядер Intel Core i5-6400 впечатляет. В номинале этот процессор практически не уступает по производительности Intel Core i5-6600K, работающему в штатном режиме.

Тепловыделение при таких характеристиках - всего 65 Вт . Мы неоднократно забрасывали Intel лестными словами о продуктивной работе над энергоэффективностью, видимо не обойдется без похвалы и в этот раз.

В нагрузке Intel Core i5-6400 редко нагревается выше 45 Градусов , а для отвода тепла хватает BOX кулера или алюминиевой вертушки за 500 рублей с минимальными оборотами.

В Intel Core i5-6400 встроено графическое ядро под названием Intel HD Graphics 530. В статье про мы выразили разочарование по поводу невозможности должным образом познакомиться со встроенной графикой (ведь была она и в том процессоре). Факт был связан с относительной новизной и сыростью архитектуры и материнских плат на LGA 1151, а также отсутствием необходимого ПО даже на сайте производителя материнских плат (в августе 2015 года). В этот раз протестировать встроенную в ЦП графику удалось как следует, драйверы наконец-то появились.

Графика Intel HD Graphics 530 приятно удивила. Аппаратные характеристики в общем-то схожи с цифрами предыдущего поколения (максимальный объем памяти, отгрызаемый от ОЗУ, - 1,7 Гбайт, частота ядра - 950 МГц), а вот производительность в трехмерных приложениях явно возросла.

Впервые мы сталкиваемся с процессорной графикой тянуть игры в Full HD разрешении (пусть и на средних, даже близкие к низким, настройках качества картинки). Эволюция в этом направлении действительно заметна, быть может настанет день, когда от категории low-end в AMD и NVIDIA откажутся навсегда по причине бесполезности.

Intel HD Graphics 530 поддерживает DirectX 12, OpenGL 4.4 (хотя от этих технологий существует сомнительная польза для встроенного ядра), а также подключение трех дисплеев и максимальное разрешение 4096×2304 пикселя.

Таким образом линейка Intel Core i5 с появлением шестого поколения становится еще более мультимедийной и подходящей для домашнего использования, если в круг интересов юзера входит исключительно потребление видео контента высокой четкости, а не редактирование и обработка такового. В подобном случае реально обойтись только процессором, внешняя графика фактически не нужна (само собой исключения найдутся и в таком случае, и далеко не единичные).

Тестовый стенд:

Мощность физических ядер Intel Core i5-6400 впечатляет. В номинале этот процессор практически не уступает по производительности Intel Core i5-6600K, работающему в штатном режиме. Да и все конкуренты из предыдущих линеек схожего класса не сильно хуже, и не сильно лучше. Итоги вполне ожидаемы - это, как было сказано выше, логический заменитель (по всем форматам, в том числе и в плане мощности) прошлогодней линейки, позапрошлой и поза-позапрошлой .

Интересно другое. Во-первых, номинальной мощности Intel Core i5-6400 вполне достаточно для современных игр, а также для раскрытия рабочего потенциала самых мощных видеокарт ( тому подтверждение). Данный ЦП мы включили в нашу исследовательскую статью про изучение игрового потенциала современных процессоров. В результате Intel Core i5-6400 демонстрировал ровно такие же кадр/с, как и разогнанный Intel Core i5-6600K и даже , который формально мощнее и дороже сегодняшней новинки в разы.

Во-вторых, Intel Core i5-6400 позволил наконец разобраться в сложившейся с BCLK ситуацией и несколько утихомирить нашу радость, ставшую, видимо иллюзорной, по поводу реальной возможности разгонять заблокированные процессоры путем поднятия базовой шины.

Эксперимент с BCLK проводился на двух материнских платах: , которая доказала, что способна без труда функционировать на 150-200 МГц по BCLK, а также на MSI Z170A GAMING M5, которая не потянула и 110 МГц в паре с тестовым процессором (мы стали грешить на материнскую плату от MSI в связи с таким раскладом, пока не убедились, что вариант от ASUS также не способен раскочегарить Intel Core i5-6400 до сколько-то серьезных показателей).

Множитель Intel Core i5-6400 в UEFI ограничен значением 31 (странно как удается в турбо режиме достичь 3300 МГц, потому что наш экземпляр просто не способен работать на частоте выше 3100 МГц, простая математика), поднять тактовую частоту BCLK мы пытались разными способами. Автоматический вариант TPU на плате ASUS Z170-A, который, казалось бы, работает безотказно и стопроцентно, ни в первом, ни во втором режиме не помог.

Приводим даже скриншоты всех регулируемых параметров, которые подверглись изменению (почти все настройки, вплоть до уровня напряжения и опций подсистемы памяти, были переведены в режим Extreme) для оверклокинга Intel Core i5-6400. Ничего не помогло.

Вольтаж на процессоре – 1,305 В, на ОЗУ – 1,350 В, активированы функции дополнительного питания, буст для цифровой DIGI +, итог - 3180 МГц на Intel Core i5-6400, и все тут.

Впервые мы сталкиваемся с процессорной графикой , которая в состоянии более-менее тянуть игры в Full HD разрешении.

Видимо чудес не бывает, и регулируемая шина BCLK в широком диапазоне доступна лишь обладателям процессоров с разблокированным множителем (с другой стороны, какой от этого прок, если разгонять подобные ЦП все равно будут более простым и классическим способом).

Надежда, безусловно, есть (все-таки не все процессоры из шестой серии мы еще протестировали), но она весьма призрачная. Формат, избранный Intel много лет назад, по всей видимости, сохранился до сих пор.

В итоге Intel Core i5-6400 как ни один другой процессор оптимально подходит под нужды, на которые и ориентирован. Об этом свидетельствует прежде всего отпускная цена и производительность, два ключевых фактора.

Мощности камня вполне достаточно для прокачки самых современных одноядерных графических карт, а также для домашнего рендеринга, редактирования и для какой угодно еще работы бытового характера. При этом процессор совершенно не нагревается.

Дополнительный плюс - достойное внутреннее видео ядро, которое пригодится, если внешнюю видеокарту по тем или иным причинам устанавливать не захочется. С выводом контента высокой четкости и с обработкой не самых детализированных трехмерных сцен Intel HD Graphics 530 справится без труда.

Результаты тестирования процессора Intel Core i5-6400:





Наличие шести ограничивающих факторов разгона неоверклокерских Skylake расстраивает. Но даже с учетом такого числа искусственных барьеров результат оказался вполне достойным. Тестирование показало, что в большинстве случаев разгон неоверклокерских Skylake имеет место быть. Исключениями являются программы, использующие векторные инструкции AVX/AVX2. Если вы постоянно работаете с такими приложениями, то лучше либо не разгонять процессор вообще, либо взять более быстрый Skylake-аналог, либо раскошелиться на чип с разблокированным множителем.

Если компьютер используется преимущественно для игр, то оверклок здесь очень даже к месту. В статье я не раз затрагивал тему экономии. Так вот, покупка и разгон дешевого «скайлейка» высвободят часть бюджета для более мощной видеокарты. Плюс заметно снизится эффект процессорозависимости .

Важно помнить, что разгон - это всегда лотерея. Мне попался очень бодрый Core i5-6400, который в итоге разогнался лучше, чем специально для этого разработанный Core i5-6600K. Я не могу гарантировать, что другие пользователи смогут как минимум повторить такой результат. В принципе, до 4-4,2 ГГц Core i5-6400 разгонится точно. Это тоже очень приличный результат. Главное, чтобы матплата сумела взять 4200/27=155,5 МГц по шине.

Core i3-6300T - плохой «экспонат» для оверклокинга в домашних условиях. Вся соль этого чипа заключена в очень низком TDP. Вот и потенциал у него так себе. Лучше разгонять заведомо более быстрые модели Core i3-6100/6300. Здесь уж точно получится покорить отметку в 4,5-4,7 ГГц.

Выдвину гипотезу: AMD не в том положении, чтобы в 2016 году хоть как-нибудь ущемлять права энтузиастов. Следовательно, добрая часть чипов Zen, если их частотный потенциал окажется на высоте, получит разблокированный множитель. Если между производителями вновь возгорит жаркая конкуренция, то Intel пойдет на уступки в том числе и любителям разгона. Возможно, позабытая в далеком 2011-м году золотая эра оверклокинга вернется.